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Abstract

Objective

Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including an-
tioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A
(ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investi-
gate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to eluci-
date the mechanisms of regulation.

Materials and Methods

Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astax-
anthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days be-
fore ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory
cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Pri-
mary hepatocytes were pretreated with astaxanthin (80 uM) in vitro 24 h before stimulation
with TNF-a (10 ng/ml). The apoptosis rate and related protein expression were determined
24 h after the administration of TNF-a.

Results

Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the re-
lease of inflammatory factors. It performed anti-apoptotic effects via the descending phos-
phorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway.
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Conclusion

This research firstly expounded that astaxanthin reduced immune liver injury in ConA-
induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-
JNK-mediated apoptosis and autophagy.

Introduction

The liver, the largest digestive gland, is the center of energy metabolism in the body. Hepatitis
is a condition characterized by inflammation of the liver and the presence of inflammatory
cells in the liver tissue. Autoimmune hepatitis is a chronic disease caused by an abnormal im-
mune response against liver cells. The incidence of severe autoimmune hepatitis that develops
into liver cirrhosis, liver failure or even death has dramatically increased in Europe, the United
States and Asian countries in recent times [1,2]. At present, the etiology of this chronic disease
is not fully understood [3]. Currently, this condition is therapeutically controlled by adminis-
tration of glucocorticoid combined with azathioprine, however, side effects are experienced
due to impaired immunity and a disturbed endocrine system [4]. The identification of effective
and safe treatment options for autoimmune hepatitis is therefore urgently required.

Effective drug screening programs for hepatitis depend on the establishment of suitable ani-
mal models able to closely resemble the pathological process that occurs in the human liver.
Many models of drug-induced liver injury mimic the development of various types of hepatitis,
including those established with bacillus Chalmette—Guerin (BCG)/lipopolysaccharide (LPS),
p-galactosamine (p-GalN)/LPS, or CCl,. The mechanism by which they induce liver injury
partly depend on the activation of T cells and macrophages to produce inflammatory cyto-
kines, such as TNF-a, IL-6, IL-1f, and IFN-y [5,6]. Among these models, ConA-induced liver
injury is popular because it is dose dependent and simple to establish. In 1992, Tiegs and col-
leagues successfully established a concanavalin A (ConA)-induced immunological liver injury
mouse model [7]. ConA is a plant blood lectin that promotes cell division. ConA has been
shown to strongly activate intrahepatic CD4+ T cells and macrophages that entered into the
hepatic sinus causing proliferation and the production of cytokines, including TNF-a, IL-6, IL-
1B and IFN-vy [8-11], directly or indirectly leading to liver damage. In addition, nuclear transfer
of nuclear factor-xB p65 (NF-kB p65) and the interaction of ICAM-1/LFA-1 between lympho-
cytes and hepatocytes also played a role in liver cell damage [12,13]. Research has shown that
cytokine production peaked before lymphocyte infiltration indicating the association between
high cytokine levels and early liver damage [14]. TNF-o. was the dominant cytokine causing ir-
reversible, detrimental biological effects in many types of drug-induced liver injury, including
those induced with ConA, BCG/LPS, or b-GalN/LPS [15-17].

Previous studies have demonstrated that the pathogenesis of liver injury caused by ConA-
induced autoimmune hepatitis involved apoptosis and autophagy [18-20]. Apoptosis, first de-
fined by Kerr and colleagues, is a biochemical and morphological process triggered by extrinsic
and intrinsic pathways that both activate cysteine proteases known as caspases [21]. As the
major effector in ConA damage, blockage of TNF-a synthesis had anti-inflammatory and anti-
apoptotic effects [22]. Serum TNF-o interacted with the death domain of the adapter molecule
TNF receptor-associated protein (TRADD) through activating TNF receptor 1 (TNFR1) com-
bined with TNF receptor-associated factor 2 (TRAF2), leading to the formation of the signal
transducer Fas-associated protein with death domain (FADD) and apoptosis [23]. The Bcl-2
protein family, which is representative of the intrinsic pathway, was involved in the regulation
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process. Autophagy, first described by Ashford and Porter, is a catabolic process accompanied
by the formation of autophagosomes and autolysosomes, which leads to the massive degrada-
tion of organelles such as the mitochondria and endoplasmic reticulum [24]. As a peculiar phe-
nomenon of eukaryotic cells, autophagy is a doubled-edged sword, facilitating either cell
survival or death. Increasing evidence suggests that autophagy negatively regulates the liver
protection mechanism [25,26]. However, in the animal model of ConA-induced hepatitis,
TNF-o could participate in autophagy through the interactions between Beclin-1 and Bcl-2 or
between FADD and Atg5 [27].

Astaxanthin (3, 3'-dihydroxy-p, p'-carotene-4, 4'-dione), a kind of carotenoid pigment natu-
rally produced by algae, bacteria and phytoplankton, contains conjugated double bonds, hy-
droxyl and ketone groups involved in electron transfer and free radicals [28]. In recent years,
astaxanthin has been shown to exhibit a wide range of biological effects, such as antioxidant,
atherosclerosis and antitumor properties [29-32]. Recent evidence showed that astaxanthin is
a potential antioxidant that plays a role in terminating the inflammatory response. Bhuvanes-
wari and colleagues found that astaxanthin could suppress NF-«B p65-mediated inflammation
in high fructose and high fat diet-fed mice [33]. Astaxanthin was illuminated as a cardioprotec-
tive supplement through its anti-inflammatory properties, described by Nakao and colleagues
[34]. Kuzuhiro and colleagues also demonstrated the effects of astaxanthin on LPS-induced in-
flammation in vitro and in vivo [35]. In addition, astaxanthin was shown to play an important
role in protecting eyes from inflammatory infiltration and reducing inflammatory proliferation
of skin [36-38]. On the one hand, astaxanthin showed clear inhibition of inflammatory cyto-
kines such as TNF-a, IL-6, IL-1B and IFN-y [39,40]. In ConA-induced liver injury, the dam-
aged tissue contributed to the release of reactive oxygen species (ROS) and nitric oxide (NO).
Then, astaxanthin could provide protection against hepatitis by reducing the production of
ROS and NO and reducing the activity of inducible nitric oxide synthase to inhibit cyclooxy-
genase (COX) and TNF-a levels [35,41]. However, on the other hand, astaxanthin could also
down-regulate activation and migration of NF-kB p65 mediated by ConA to attenuate the ex-
pression of NF-kB p65 in the nucleus to achieve anti-inflammatory effects [42]. Currently, the
mechanism of action of astaxanthin in ConA-induced autoimmune hepatitis is unclear. How-
ever, the establishment of a ConA-induced immunological liver injury mouse model that close-
ly resembles the pathogenic process in the human liver now provides the opportunity to study
the pharmacological properties of potential hepatitis drug candidates.

In this study, we investigated the mechanism of action of astaxanthin in ConA-induced au-
toimmune hepatitis. We hypothesized that astaxanthin could inhibit the rise in TNF-a levels
caused by ConA-induced hepatitis, in turn reducing liver damage. We also investigated the
mechanism of action of astaxanthin.

Materials and Methods
2.1 Reagents

Astaxanthin, ConA, and dimethyl sulfoxide (DMSO) were purchased from Sigma— Aldrich
(St. Louis, MO, USA). TNF-a was purchased from Peprotech (Rocky Hill, NJ, USA). Antibod-
ies were from Cell Signaling Technology (Danvers, MA, USA), including the antibodies against
NF-«B p65, IL-6, IL-1B, IFN-vy, LC3, Beclinl, Bcl-2, Bax, JNK, p-JNK, ERK, p-ERK, P38
MAPK, p-P38 MAPK, TNF-0, and TRAF2. The alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) microplate test kits were purchased from Nanjing Jiancheng Bioengi-
neering Institute (Jiancheng Biotech, China). The RNA polymerase chain reaction (PCR) kit
was purchased from Takara (Takara Biotechnology, Dalian, China). The cell counting kit
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(CCK8) was produced by Dojindo (Dojindo Laboratories, Japan). The Annexin V-APC/7-
AAD apoptosis detection kitwas purchased from BD Biosciences (San Jose, CA, USA).

2.2 Animals

Male Balb/c mice weighing between 20 and 25 g (7-9 weeks old) were purchased from Shang-
hai Laboratory Animal Co. Ltd. (SLAC, Shanghai, China). The mice were housed in a clean
room at a temperature of 23+2°C and a humidity of 50% with a 12 h alternating light and dark
cycle. They were permitted free access to food and water. All animal experiments were per-
formed according to the National Institutes of Health Guidelines for the Care and Use of Labo-
ratory Animals and were approved by the Animal Care and Use Committee of Shanghai
Tongji University, China.

2.3 Hepatocyte isolation

Primary hepatocytes were isolated with a two-step perfusion method [43]. Briefly, the executed
mice were laparotomized after soaking in 75% ethanol. The hepatic portal vein was perfused
with 10 mL of prewarmed p-Hanks buffer for 10 min, and then with 5 ml of 0.02% type V col-
lagenase solution. The removed liver tissues were cut into small pieces and placed in collage-
nase V solution in a shaking water bath for approximately 30 min. The cell suspensions were
then filtered into a glass tube and centrifuged at 800 g for 5 min. RPMI-1640 culture medium
was added to the washed primary hepatocytes, which were then incubated at 37°C under 5%
CO,. The viability of the isolated hepatocytes was determined with Trypan blue exclusion, and
exceeded 95%.

2.4 Cell culture and CCK8 assay

The primary hepatocytes were cultured in RPMI-1640 culture medium (Thermo, China) sup-

plemented with 10% fetal bovine serum (Hyclone, South America), 100 U/mL penicillin, and

100 g /ml streptomycin (Gibco, Canada) in a humidified incubator at 37°C under 5% CO,. The

cells were plated at a density 2 10* cells/well in 96-well plates (100 uL medium per well). The

concentration of TNF-o was 10 ng/ml and the astaxanthin concentration was 20, 40, 60, 80,

100, or 120 M. Cell viability was measured with the CCK8 assay at a wavelength of 450 nm.
The primary hepatocytes were divided into five groups:

1. Control group: no treatment;

2. Astaxanthin group: treated with astaxanthin diluted in DMSO at a concentration of 80 uM;
3. DMSO group: treated with DMSO at a concentration of 80 uM;

4. TNF-o group: treated with TNF-a dissolved at a concentration of 20 ng/ml;

5. TNF-o-+astaxanthin group: astaxanthin administered 24 h before stimulation with TNF-o.

2.5 Preliminary study

A total of 72 mice were randomly divided into four groups: group A was given no treatment
and group B was lavaged with olive oil. Astaxanthin was dissolved in olive oil and orally admin-
istered at a daily dose of 20 mg/kg (group C) or 40 mg/kg (group D) for two weeks. Six mice
randomly selected from the four groups were killed. Sera and liver tissues were collected and
analyzed for liver enzymes, immune cell subsets, cytokine levels and pathological changes.
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2.6 Drug preparation

ConA was dissolved in pyrogen-free saline at a concentration of 2.5 mg/ml and injected at a
dose of 25 mg/kg body weight to induce hepatitis as previously described [11]. All 96 mice
were treated by tail intravenous injection of ConA 1 h before drawing materials. The mice were
randomly divided into four groups, as follows:

1. Normal group (n = 24): lavage for olive oil;

2. ConA group (n = 24): ConA injected via tail vein after lavage with olive oil;
3. Low dose group (n = 24): ConA + 20 mg/(kg-d) astaxanthin;

4. High dose group (n = 24): ConA + 40 mg/(kg-d) astaxanthin.

2.7 Serum liver enzyme analysis and cytokine assessment

Blood obtained from individual mice was collected at 2, 8 and 24 h after ConA induction, ac-
cording to a previous study [44]. After 5 h standing, the serum was separated by centrifugation
at 4300 g for 10 min at 4°C and used in the detection of liver function and cytokine levels. ALT
and AST were measured using an automated chemical analyzer (Olympus AU1000, Japan) and
NF-«B p65 and IL-6 levels were assessed using enzyme-linked immunosorbent assay (ELISA)
kits (R&D Systems, USA) according to the manufacturers’ protocols.

2.8 Histopathology

A portion of the live tissue from individual mice that had been fixed in 4% paraformaldehyde
was subjected to dehydration and penetration. The specimen was then embedded in paraffin.
The section was cut at a thickness of 5 um for hematoxylin and eosin (H&E) staining. Any
changes in liver pathology were assessed by light microscopy.

2.9 Immunohistochemistry

Prepared paraffin sections that had been baked for 1 h at 60°C were dewaxed and rehydrated
using xylene and different concentrations of alcohol. Antigens immersed in the citrate buffer
were recovered by the heat-induced antigen retrieval technique, which involved heating in a
water bath at 95°C for 10 min, then cooling to room temperature. Hydrogen peroxide solution
(3%) was added to the specimens that were then stored for 20 min at 37°C to block endogenous
peroxidase activity. The sections were then washed with phosphate buffer solution (PBS) three
times and blocked with 5% bovine serum albumin (BSA) at 37°C for 20 min, followed by a 10-
min incubation at room temperature. Next, the liver specimens were incubated overnight at
4°C with primary antibodies including anti-LC3 I/II (diluted 1:500), anti-Beclin-1 (diluted
1:500), anti-p-JNK (diluted 1:100) and anti-TNF-o. (diluted 1:100). On the second day, the
slices stained using a diaminobenzidine (DAB) kit were slide-integrated and then observed by
light microscopy. Color development was filmed using a digital camera (Olympus) mounted
on a microscope (Leica, Wetzlar, Germany). The integrated optical densities (IOD) of different
indicators were calculated using Image-Pro Plus software 6.0 (Media Cybernetics, Silver
Spring, MD, USA).

2.10 Western blotting analysis

Total protein was extracted using radio immunoprecipitation assay (RIPA) lysis buffer with
protease inhibitors (PI) and phenylmethane-sulfonyl fluoride (PMSF) from the liver tissue
stored at —80°C. The concentration of the prepared protein was calculated using the
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bicinchoninic acid (BCA) protein assay (Kaiji, China) and samples were prepared in 5x sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS—PAGE) sample loading buffer. The
proteins were separated on 8%-12.5% SDS-polyacrylamide gels and transferred onto polyviny-
lidene fluoride (PVDF) membranes. PBS containing 0.1% Tween 20 (PBST) and 5% non-fat
dried milk was used to block non-specific binding sites, then membranes were incubated over-
night at 4°C with primary antibodies: B-actin (1:1000), NF-xB p65 (1:500), IL-6 (1:500), IL-1
(1:200), IFN-y (1:200), LC3 (1:1000), Beclin1 (1:500), Bcl-2 (1:1000), Bax (1:500), JNK
(1:1000), p-JNK (1:500), ERK(1:500), p-ERK(1:500), P38 MAPK (1:1000), p-P38 MAPK
(1:500), TNF-c. (1:500) and TRAF2 (1:1000). Membranes were then washed with PBST three
times and incubated with the secondary antibody horseradish peroxidase-conjugated anti-rab-
bit or anti-mouse IgG (1:2000) for 1 h at room temperature. Finally, the membranes were
washed three times and scanned using the Odyssey two-color infrared laser imaging system
(fluorescence detection). Molecular sizes were determined by comparison with the prestained
molecular weight markers.

2.11 Reverse transcription (RT)-PCR and quantitative real time (QRT)-
PCR

We extracted the total RNA from frozen liver tissues and then transcribed it into cDNA using
the reverse transcription kit (TaKaRa Biotechnology, China), as instructed by the manufactur-
er. SYBR Green quantitative RT-PCR was performed to determine the gene expression level
using a 7900HT fast real-time PCR system (Applied Biosystems, CA, USA), according to the
protocols provided with the SYBR Premix EX Taq (TaKaRa Biotechnology, China). The levels
of target gene were normalized with respect to the data for the B-actin gene. The primer se-
quences used in the experiment are shown in Table 1.

2.12 Transmission electron microscopy (TEM)

The flushed liver tissue was perfused with 2% glutaraldehyde buffered with 0.2 mmol/L cacody-
late and postfixed in osmium tetroxide (OsO,). Then the sections were viewed by electron mi-
croscopy (JEM1230, JEOL, Japan) and the images were printed onto photographic paper.

2.13 Detection of apoptosis and immune cell subsets with flow cytometry

Primary hepatocytes were plated in 12-well plates. Cells in the control group, astaxanthin
group, DMSO group, TNF-o group, and TNF-o+astaxanthin group were collected after 24 h.
After the cells were washed twice with cold PBS, suspended in 1 binding buffer, and then incu-
bated for 15 min with 5 pL of annexin-V/APC. 7-Amino-actinomycin D (7-AAD) (5 uL) and
another 200 pL of binding buffer were added before the machine-readable measurements
were made.

The monoplast suspension of liver tissue were stained with phycoerythrin-conjugated CD3,
CD4, CD8, CD16+56 and CD19 antibodies (Miltenyi Biotec, Auburn, CA) and incubated for
30 min. The labeled cells were analyzed by the flow cytometry in accordance with the
manufacturer’s protocols.

2.14 Statistical analysis

The experimental data were evaluated by calculating the mean+SD. Student’s t test and one-
way analysis of variance (ANOVA), followed by the Tukey’s test when F was significant, were
performed to compare the differences between the experimental groups according to their
characteristics. Statistical significance was assumed at P<0.05. All statistical analyses were
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Table 1. Nucleotide sequences of primers used for qRT-PCR.

Gene Primer sequence (5'—3')
NF-kB p65 Forward ATGGCAGACGATGATCCCTAC
Reverse CGGATCGAAATCCCCTCTGTT
IL-6 Forward CTGCAAGAGACTTCCATCCAG
Reverse AGTGGTATAGACAGGTCTGTTGG
IL-1B Forward CGATCGCGCAGGGGCTGGGCGG
Reverse AGGAACTGACGGTACTGATGGA
IFN-y Forward GCCACGGCACAGTCATTGA
Reverse TGCTGATGGCCTGATTGTCTT
LC3 Forward GACCGCTGTAAGGAGGTGC
Reverse AGAAGCCGAAGGTTTCTTGGG
Beclin1 Forward ATGGAGGGGTCTAAGGCGTC
Reverse TGGGCTGTGGTAAGTAATGGA
Bax Forward AGACAGGGGCCTTTTTGCTAC
Reverse AATTCGCCGGAGACACTCG
Bcl-2 Forward GCTACCGTCGTCGTGACTTCGC
Reverse CCCCACCGAACTCAAAGAAGG
TNF-a Forward CAGGCGGTGCCTATGTCTC
Reverse CGATCACCCCGAAGTTCAGTAG
TRAF2 Forward AGAGAGTAGTTCGGCCTTTC
Reverse GTGCATCCATCATTGGGACAG
B-actin Forward GGCTGTATTCCCCTCCATCG
Reverse CCAGTTGGTAACAATGCCATGT

doi:10.1371/journal.pone.0120440.t001

calculated using the GraphPad Prism Software version 6.0 for Windows (GraphPad, San
Diego, USA).

Results

3.1 Olive oil and astaxanthin do not affect liver function or the
inflammatory response

The drug solvent itself may affect liver function, so we analyzed the effects of olive oil and
astaxanthin on liver enzymes and cytokine release. Fig. 1A shows that the levels of serum ALT,
AST did not differ in the four groups, and the percentage of different immune cell subsets,
serum levels of TNF-a, IL-6, IL-1pB, and IFN-y of four groups were consistent. HE staining
showed no obvious necrosis in any of the slices, as shown Fig. 1C.

3.2 Liver injury in mice was alleviated by pretreatment with astaxanthin

It is well established that ConA can induce immunological liver injury rapidly. Serum and liver
tissue were therefore collected at 2, 8 and 24 h to evaluate the changes in liver function and ne-
crosis. Fig. 2A shows that the levels of serum ALT and AST significantly varied among the
groups at each timepoint. The most significant increase occurred in the ConA group, while
astaxanthin pretreatment dramatically reduced the serum level. The high dose group showed
more pronounced effects than the low dose group. Similar results were found when the necrot-
ic and edematous area was analyzed by histopathology. Large areas of flaky necrosis and in-
flammatory infiltration were observed in the ConA group compared with a slight
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Fig 1. Effects of olive oil and astaxanthin on the liver function and pathology of healthy mice. (A) The levels of serum ALT and AST in the four groups
did not differ. Data are given as means + SD (n =6, P > 0.05). (B) The percentage of differentimmune cell subsets, serum levels of TNF-a, IL-6, IL-18, and
IFN-y of four groups were evaluated in each group with ELISAs or flow cytometry (n =6, P > 0.05). (C) Representative hematoxylin-and-eosin-stained
sections of the liver. Original magnification, x200.

doi:10.1371/journal.pone.0120440.g001

improvement in the liver tissue in the drug treatment group at 8 h. Also, the effects correlated
with the dosage of astaxanthin pretreatment at every timepoint, with less necrosis evident in
the high dose group, as shown in Fig. 2B. Taken together, these findings suggested that astax-
anthin pretreatment can effectively improve the autoimmune liver damage caused by ConA.
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3.3 Astaxanthin pretreatment protected the liver from the damage
caused by inflammation factors

The production of inflammation factors was closely related to the degree of liver injury. As
shown Fig. 3A, the plasma levels of TNF-q, IL-6, IL-1f, and IFN-v, as detected with ELISAs, in-
creased dramatically due to liver damage after ConA induction compared with the normal
group, whereas related effectors were greatly decreased with pretreatment of astaxanthin, espe-
cially at 8 h. To verify these results, we used real-time PCR to quantitate mRNA and determine
the level of transcription (Fig. 3B). The expression levels of NF-«B p65, IL-6, IL-1f and IFN-y
in the high dose group were lower than in the low dose group. The results of western blot anal-
ysis showed that protein expression levels of NF-«xB p65, IL-6, IL-1$ and IFN-v in liver tissue
were consistent with mRNA transcription (Fig. 3C). High protein expression levels were de-
tected in the ConA group compared with lower expression levels in the astaxanthin pretreat-
ment group at every time point, with the most obvious differences at 8 h. The results provided
strong evidence that astaxanthin could inhibit the release of inflammatory factors, such as NF-
kB p65, TNF-0, IL-6, IL-1p and IEN-y, with the levels of these factors being consistently lower
in plasma, and when measuring transcription and protein expression in the astaxanthin
pretreatment group.

3.4 Astaxanthin down-regulated autophagy and apoptosis in ConA-
induced hepatitis

LC3 and Beclinl are important markers of autophagy, and Bax and Bcl-2 play vital roles in the
regulation of apoptosis. Similarly to the inflammatory markers, real time PCR and western blot
technologies were applied to assess the activation of autophagy and apoptosis at the transcrip-
tional and protein levels, respectively, in liver tissue (Fig. 4A&#4B). LC3 and Beclinl expression
decreased with increased drug dose, with the ConA treatment group presenting the highest ex-
pression levels. For the apoptotic markers, astaxanthin promoted the expression of anti-apo-
ptosis protein Bcl-2 but inhibited the pro-apoptotic proteins Bax and caspase-9. These results
were consistent with the changes in immunohistochemistry (Fig. 4C). In addition, electron mi-
croscopy was used to detect autophagosomes in liver tissue (Fig. 4D). Compared with the nor-
mal group, agglutinative chromatin, damaged mitochondria and many lysosomes and
autophagosomes were identified in the ConA group. After the gavage administration of astax-
anthin, the cellular injuries described above were less easily detected. Taken together, these re-
sults indicated that astaxanthin could inhibit autophagy and apoptotic processes caused by
ConA to reduce pathological damage of the liver.

3.5 Astaxanthin attenuates JNK signal pathway by blocking the
interaction between TNF-a and TRAF2

The JNK/p-JNK pathway has been shown to be important in up-regulating autophagy and ap-
optosis. To explore the mechanistic pathway of astaxanthin, we measured the concentration of
the activated form of JNK, phosphorylated JNK (p-JNK), in plasma and liver tissue. As shown
in Fig. 5B, ConA activated the up-regulation of JNK phosphorylation, and astaxanthin weak-
ened this effect at all timepoints. In liver tissue and at the protein level, p-JNK expression at the
high dose of astaxanthin was lower than that in the ConA group and the low dose group. The
consistency between these results and immunohistochemical staining suggested that the JNK
signaling pathway was attenuated by astaxanthin through inhibiting JNK phosphorylation
(Fig. 5C).
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doi:10.1371/journal.pone.0120440.9003
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magnification, 200). The integrated optical densities (IODs) of different the indices are expressed as means +
SD (n =8, *P < 0.05 for Oil versus ConA, *P < 0.05 for ConA+Astaxanthin (20) versus ConA, *P < 0.05 for
ConA+Astaxanthin (40) versus ConA). (D) Autophagosome formation was detected in liver tissues with
transmission electron microscopy at 8 h (magnification, 10,000). Arrows indicate autophagosomes.

doi:10.1371/journal.pone.0120440.g004

Previous studies have shown that astaxanthin does not directly interact with the JNK signal
pathway, and that there are many adjustment factors associated with p-JNK production. TNE-
o plays an essential role in ConA-induced damage and was proposed to play a part, along with
its receptor TRAF2, in the phosphorylation process of JNK. The expression of TNF-o and
TRAF?2 in plasma and tissue, as shown in Fig. 5, was consistent with the changes in p-JNK.
These results revealed that astaxanthin downregulated the JNK signal pathway by inhibiting
the combination of TNF-o. and TRAF2. This trend kept pace with other members of the
MAPK family, including ERK and P38 MAPK (Fig. 5D)

3.6 Astaxanthin protected the proliferation of primary hepatocytes
induced by TNF-a and inhibited their apoptosis

CCK8 is commonly used to measure cell proliferation. Our results show that primary hepato-
cytes treated with increasing concentrations (20-120 uM) of before TNF-a damage proliferat-
ed astaxanthin dose dependently (Fig. 6A). This indicates that astaxanthin protected the
primary hepatocytes from inflammatory damage. We selected 80 uM as an effective dose of
astaxanthin for our subsequent experiments. The results of flow cytometry and western blot-
ting showed that the primary hepatocytes appeared a secure apoptosis after the administration
of TNF-o. However, pretreatment with astaxanthin significantly reduced the percentage of ap-
optotic cells, as evident in the changes in Bcl-2 and Bax (Fig. 6C).

Discussion

In recent years, the incidence of autoimmune hepatitis has increased worldwide [45]. The
search for a safe and effective therapy is therefore more important than ever. Astaxanthin, a
powerful antioxidant, has attracted the attention of scientists.

The ConA mouse model is a well-established model to explore liver injury caused by an in-
flammatory response. Recent research has shown that autoimmune hepatitis was associated
with the release of large amounts of inflammatory cytokines, such as TNF-a, IL-6, IL-1§ and
IFN-v, leading to apoptosis and necrosis in liver pathology [8,14]. TNF-o, secreted by the liver
Kuftfer cells, has been shown to play a particularly important role elevating not only the expres-
sion levels of ALT and AST but also leading to necrosis of the liver tissue [14,23]. Three sepa-
rate previous studies showed that astaxanthin could perform anti-inflammatory effects
through the inhibition of the NF-xB p65 or SHP-1 pathway to reduce TNF-o levels in LPS/
GalN-administered mice, high-fat-fed mice, or U937 cells [33,42,46]. However, the mechanism
of action of astaxanthin in immunological liver injury remained unclear.

In this study, we investigated the mechanism of action of astaxanthin in ConA-induced au-
toimmune hepatitis. We found that pretreatment of mice with astaxanthin could be beneficial
for ConA-induced immune injury prompted by conversion of the serum liver enzyme, the re-
lease of inflammatory factors and pathological changes. The serum ALT and AST levels and
the area of necrosis on biopsy exhibited a significant decline with an increasing dosage of astax-
anthin (20 mg/kg versus 40 mg/kg), indicating that astaxanthin has beneficial effects on liver
function in ConA-induced hepatitis. PCR and western blot analysis demonstrated a reduction
in the levels of inflammatory factors IL-6, IL-1B, IFN-y and most significantly TNF-a, after
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Fig 5. Effects of astaxanthin on the regulation of the TNF-a/JNK/p-JNK pathway in mice with ConA-
induced acute hepatitis. (A) The expression of TNF-a and TRAF2 was determined with real-time PCR

(n =8, *P < 0.05 for Oil versus ConA, *P < 0.05 for ConA+Astaxanthin (20) versus ConA, *P < 0.05 for
ConA+Astaxanthin (40) versus ConA). (B) The levels of proteins TNF-a, TRAF2, JNK, and p-JNKin liver
tissue are shown as western blot bands. (C) The expression of TNF-a and p-JNK in hepatic tissues was
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determined with immunohistochemistry at 8 h (original magnification, 200) and their IODs changed
significantly with astaxanthin treatment (n = 8, *P < 0.05 for ConA+Astaxanthin (20) versus ConA, *P < 0.05
for ConA+Astaxanthin (40) versus ConA). (D) The levels of proteins ERK, p-ERK, P38 MAPK, and p-P38
MAPK in liver tissue are shown as western blot bands. The relative band densities were calculated (n = 3,

*P < 0.05 for Oil versus ConA, *P < 0.05 for ConA+Astaxanthin (20) versus ConA, *P < 0.05 for ConA
+Astaxanthin (40) versus ConA).

doi:10.1371/journal.pone.0120440.g005

astaxanthin treatment. We considered whether astaxanthin could protect the liver from dam-
age though inhibiting the combination between TNF-o and the membrane receptor TNFR1,
causing an increase in TRAF2, TRADD and FADD, and inhibiting the JNK phosphorylation
pathway [16].

Mitogen-activated protein kinases (MAPKs), a class of serine—threonine protein kinase ac-
tivated by different extracellular stimuli, such as cytokines, neurotransmitters, hormones, and
cell stress, can be divided into several subgroups that are all associated with TNF-o: ERK, P38,
and JNK. JNK, an important branch of the MAPKs, plays an essential role in the apoptosis in-
duced by TNF-o. [47,48]. Many studies have suggested that TNF-o-induced JNK signaling is
responsible for most systemic diseases [49,50]. In human dental pulp fibroblast-like cells
(HPFs), the activation of cAMP response element-binding protein (CREB) via the JNK path-
way in the presence of TNF-o enhanced metalloproteinase-3 production [51]. Tumor necrosis
factor receptor associated factor 6 (TRAF6), upregulated in spinal cord astrocytes in the late
phase of nerve injury, maintains neuropathic pain by integrating the TNF-o/JNK pathways
[52]. Streetz and colleagues validated the significance of prolonged activated JNK on hepato-
cyte damage caused by TNF-o. in ConA-induced liver injury in vivo and in vitro [53]. After
ConA was injected, JNK was phosphorylated to form phosphor-JNK (p-JNK) that migrated to
the mitochondrial membrane or cell nucleus causing tissue damage. Hideaki and colleagues
demonstrated that the antioxidant butylated hydroxyanisole (BHA) inhibited JNK phosphory-
lation in mice and protected the liver tissue from ConA injury [54]. However, the mechanism
of action of astaxanthin remained unclear. In this study, we used PCR, western blotting and
immunohistochemical methods to demonstrate high expression of p-JNK and TRAF2 in the
ConA group and low expression of p-JNK and TRAF2 in the astaxanthin-pretreatment groups.
The expression of ERK and P38 MAPK proteins and their levels of phosphorylation have been
shown to be consistent with JNK activation. These results suggested that astaxanthin could
block the excitation of JNK through the interaction between TNF-o. and TNFRI, triggering a
conformational change in TRAF2. TNF-a also affects the phosphorylation of other members
of the MAPK family, ERK and P38 MAPK.

This led to the question of how astaxanthin regulates the activation of JNK to reduce liver
tissue damage. The Bcl-2 family includes pro-apoptotic members (Bax, Bak and Bok) and anti-
apoptotic members (Bcl-2, Bcl-xl, Bcl-2 and Mcl-1) that can mediate permeabilization of the
mitochondrial membrane, a crucial element of apoptosis [55]. JNK has been shown to migrate
to the mitochondrial membrane to phosphorylate and suppress Bcl-2 and Bcl-x1 after its activa-
tion, thereby promoting the opening of the permeability transition pore to release cytochrome
C and initiate apoptosis by caspase 9 and caspase 3 [56,57]. Our experimental results showed
significant changes in the levels of apoptosis-related proteins, such as Bcl-2, Bax and caspase 9,
after astaxanthin treatment through the effect of p-JNK. The increase in Bcl-2 and the reduc-
tion in Bax and caspase 9 indicate that astaxanthin inhibits the JNK/p-JNK pathway, and that
the phosphorylation of Bcl-2 has an antiapoptotic effect in ConA-induced hepatitis. In recent
years, research had shown that Bcl-2 can also play a role in the crosstalk between autophagy
and apoptosis, mainly by the Bcl-2/Beclin-1 complex [27,55,58]. Inactive Bcl-2 induced by p-
JNK phosphorylation dissociates from Beclin-1, and the free Beclin-1 enhances the induction
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Fig 6. Effects of astaxanthin on the proliferation and apoptosis of primary hepatocytes induced by
TNF-a. (A) The proliferation of primary hepatocytes treated with astaxanthin before TNF-a induction was
detected with CCKS8. (B) The apoptosis of primary hepatocytes was determined with flow cytometry

(n =3, *P < 0.05 for TNF-a versus control, *P < 0.05 for TNF-a+Astaxanthin versus TNF-a). (C) The protein
levels of Beclin-1, LC3, Bcl-2 and Bax proteins in primary hepatocytes are shown as western blot bands. The
relative band intensities were calculated (n = 3, *P < 0.05 for TNF-a versus control, *P < 0.05 for TNF-a
+Astaxanthin versus TNF-a).

doi:10.1371/journal.pone.0120440.g006
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of autophagy, as shown in Fig. 7. When forming autophagosomes, the cytoplasmic marker
LC3-1is converted to membrane-type LC3-II by enzymatic hydrolysis [59]. In our mouse
model of astaxanthin pretreatment, the effects of Beclin-1 and LC3-II and the dose changes at
the gene and protein levels suggest that astaxanthin facilitates crosstalk between Bcl-2 and
Beclin-1, and converts LC3-I to LC3-II, which reduces apoptosis and inhibits autophagy, re-
spectively. The effective function of astaxanthin was verified in primary liver cells from mice,
as shown in Fig. 6. The mechanisms involved in ConA-induced hepatitis are complex and mul-
tifactorial. The intricacies of these mechanisms are still to be fully elucidated and the protective
role of astaxanthin in immune injury requires further exploration.

Conclusions

In summary, our findings showed that astaxanthin reduces immune liver injury caused by
ConA via JNK/p-JNK-mediated apoptosis and autophagy. Firstly, astaxanthin attenuated
serum liver enzymes and pathological damage by inhibiting the release of inflammatory fac-
tors, such as TNF-q, IL-6, IL-1B and IFN-y. Secondly, astaxanthin performed its anti-apoptotic
effects via the descending phosphorylation of Bcl-2 activated by the TNF-o-mediated JNK/p-

O ¢ Astaxanthin

N-y
» Macropha

=

o

' Cnugll
Apoptosis /
Cytoc/

Fig 7. Mechanism of astaxanthin action. In ConA-induced autoimmune hepatitis, astaxanthin reduces autophagy by inhibiting the JNK/p-JNK pathway.
TNF-a, a proinflammatory cytokine, combined with TNFR1 and TRAF2, was expressed on the surfaces of hepatocytes after ConA injection. This led to the
activation of JNK, which phosphorylated Bcl-2, thereby promoting the release of caspase 9 and caspase 3, causing apoptosis. Inactive Bcl-2 dissociated
from Beclin-1, enhancing the induction of autophagy. Thus, astaxanthin successfully inhibits the release of TNF-a in stressed cells during acute liver injury
and also reduces apoptosis and autophagy by reducing the phosphorylation of JNK.

doi:10.1371/journal.pone.0120440.9007
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JNK pathway. The unseparated Bcl-2 and Beclin-1 complex failed to upregulate autophagic ac-
tivity, leading to the phagocytosis of organelles and reducing liver tissue damage. Our findings
highlight astaxanthin as a promising potential therapeutic agent for autoimmune hepatitis.
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